Application of Curve Interpolation in Data Modeling and Restoration
نویسنده
چکیده
Applied science and mechanics need mathematical methods for 2D processes modeling using the set of data points. A novel method of Hurwitz-Radon Matrices (MHR) is used in 2D curve modeling. Proposed method is based on the family of Hurwitz-Radon matrices which possess columns composed of orthogonal vectors. Two-dimensional process is modeled via different functions: sine, cosine, tangent, logarithm, exponent, arc sin, arc cos, arc tan and power function. Keywords— process modeling, Hurwitz-Radon matrices, coefficient of MHR method, mathematical modeling
منابع مشابه
TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملConstrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملAn Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملSpatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data
‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...
متن کاملApplication of Architectural Visual Documents and Oral History of in the Representation of Micro-Spaces and Three-Dimensional (3D) Modeling of Nawab Razavi Historical House in Yazd
Over the time, various factors have led to damage the Iranian houses. By examining the surviving documents of Nawab Razavichr('39')s house in Yazd, it is possible to represent a major part of the lost spaces and also to minimize speculation in the restoration of this historic house. The basic belief of this research is that the studies of the oral history of architecture as well as the existing...
متن کامل